An application of the interpolating scaling functions to wave packet propagation
نویسندگان
چکیده
Wave packet propagation in the basis of interpolating scaling functions (ISF) is studied. The ISF are well known in the multiresolution analysis based on spline biorthogonal wavelets. The ISF form a cardinal basis set corresponding to an equidistantly spaced grid. They have compact support of the size determined by the order of the underlying interpolating polynomial that is used to generate ISF. In this basis the potential energy matrix is diagonal and the kinetic energy matrix is sparse and, in the 1D case, has a band-diagonal structure. An important feature of the basis is that matrix elements of a Hamiltonian are exactly computed by means of simple algebraic transformations efficiently implemented numerically. Therefore the number of grid points and the order of the underlying interpolating polynomial can easily be varied allowing one to approach the accuracy of pseudospectral methods in a regular manner, similar to high order finite difference methods. The results of numerical simulation of a H+H2 collinear collision show that the ISF provide one with an accurate and efficient representation for use in the wave packet propagation method. E-mail address: [email protected] E-mail address: [email protected]
منابع مشابه
Numerical solution of linear control systems using interpolation scaling functions
The current paper proposes a technique for the numerical solution of linear control systems.The method is based on Galerkin method, which uses the interpolating scaling functions. For a highly accurate connection between functions and their derivatives, an operational matrix for the derivatives is established to reduce the problem to a set of algebraic equations. Several test problems are given...
متن کاملWave Equations in Transversely Isotropic Media in Terms of Potential Functions (RESEARCH NOTE)
A complete series of potential functions for solving the wave equations in an almost transversely isotropic media is presented. The potential functions are reduced to only one potential function particularly for axisymmetric wave propagation problems. The potential functions presented in this paper can be reduced to Lekhnitskii-Hu-Nowacki solution for elastostatics problems.
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملAnalytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series
A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...
متن کاملWave Propagation at an Interface of Elastic and Microstretch Thermoelastic Solids with Microtemperatures
In the present paper, the problem of reflection and transmission of waves at an interface of elastic and microstretch thermoelastic solids with microtemperatureshas been studied. The amplitude ratios of various reflected and transmitted waves are functions of angle of incidence and frequency of incident wave. The expressions of amplitude ratios have been computed numerically for a particular mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Physics Communications
دوره 160 شماره
صفحات -
تاریخ انتشار 2004